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Abstract—Code generation models are gaining popularity because
they can produce correct code from a prompt, speeding up
the software development process. GitHub Copilot is currently
one of the most commonly used tools for code generation. This
tool is based on GPT3, a Large Language Model (LLM), and
can perform zero-shot prompting tasks i.e., tasks for which the
model is not specifically trained. In this paper, we describe a
preliminary study that investigates whether GitHub Copilot can
predict the runtime complexity of a given program using zero-
shot prompting. In our study, we found that GitHub Copilot can
correctly predict the runtime complexity 45.44% times in the first
suggestion and 56.38% times considering all suggestions. We also
compared Copilot to other machine learning, neural network, and
transformer-based approaches for code complexity prediction.
We observed that Copilot outperformed other approaches for
predicting code with linear complexity O(n).

Index Terms—code generation, computational complexity, trans-
former, zero-shot prompting, pre-trained model, GitHub copilot

I. INTRODUCTION

Computational complexity analysis is an essential task in the
study of algorithm development [1]. The worst-case runtime
complexity of an algorithm denotes the longest time to execute
a program, depending on the algorithm’s input size. The upper
bound of the runtime complexity is mathematically described
with the Big O notation (O). For example, if an algorithm
takes constant time (i.e., not depending on the algorithm’s
input size), the upper bound complexity of this algorithm is
O(1), whereas if an algorithm takes a linear time according
to its input size n, its complexity is O(n).

Developers can use runtime complexity analysis to learn how
much time and space their code will take, as well as find
exceptionally efficient or inefficient algorithms and data struc-
tures. This can help select the best algorithms for particular
tasks and locate and remove pointless actions that might be
slowing down the program [1].

§These authors equally contributed to this work.

With the release of GitHub Copilot in 2021, automated code
generation techniques are increasingly being adopted in the
industry [2], [3]. These techniques rely on a user-provided
prompt to generate code [4]. The prompt specifies the devel-
oper’s intent and can have varying granularity and structure.
They can include code comments, code elements (e.g., func-
tion signatures, expressions, identifiers, etc.), or a combination
of these. Thus, developers can produce a first iteration of code
and/or a comment and then rely on these tools to generate
the remaining code, saving them time and accelerating the
software development process [2], [3], [5].

Although code generation models based on a Large Language
Model (LLM) are specifically designed for code generation
tasks, it is well known that LLMs can be used for other tasks
with zero-shot prompting [6]. Zero-shot prompting means the
model can be used for tasks that are not explicitly trained
but can produce a reasonable solution. In this short paper,
we investigate whether the GitHub Copilot, a GPT3-based [7]
code generation model [8], can understand the code’s structure
to help predict the code’s computational complexity.

II. BACKGROUND

A. Zero-shot Prompting

Zero-shot prompting is the ability of a natural language pro-
cessing (NLP) system to generate prompts to elicit the desired
response from a user, even in situations where the system has
not been explicitly trained on examples of the desired response
[9]. This capability is important for NLP systems to be more
flexible and adaptable. Researchers have explored unsuper-
vised, transfer, and multitask learning approaches to address
the lack of labeled training data for the desired responses
[10]–[12]. For example, transfer learning has shown promising
results for zero-shot prompting by transferring knowledge
from one task or domain to another using a small amount
of labeled data from the target task [12].
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B. Computational Complexity

Computational complexity refers to the time it takes for a
computer to execute an algorithm, considering the input’s
size n [13]. For example, if the complexity of an algorithm
is O(n2), the execution time will increase at a much faster
rate as the input size grows than if the complexity was
O(n× log(n)). Developers must consider the time complexity
when designing and implementing algorithms to create more
efficient solutions.

III. METHODOLOGY

In the next sections, we describe (i) the dataset we used for
evaluation, (ii) the systematic steps we followed to use GitHub
Copilot to compute the complexity of the collected samples,
and (iii) how we analyzed the results.

A. Dataset

We collected the dataset from Jeon et al. [14], which consists
of 4,120 samples from the CodeContests dataset from Deep-
Mind [15], CoRCoD dataset [13] and samples created by the
authors. The samples are written in Java and are manually
annotated by experts with one of the following complexities:
O(1) (constant), O(n) (linear), O(n2) (quadratic), O(n3))
(cubic), O(ln(n)) (logarithmic), O(n × ln(n)) (linear loga-
rithmic), and NP-hard. We used the test set of this dataset
which contains 768 samples. Table I presents the distribution
of the dataset used in our work.

TABLE I
CLASS DISTRIBUTION IN THE TEST DATASET FROM [14]

Class Description # of Samples
O(1) Constant 106 (13.80%)
O(n) Linear 102 (13.28%)
O(ln(n)) Logarithmic 114 (14.84%)
O(n2) Quadratic 117 (15.23%)
O(n3) Cubic 112 (14.58%)
O(n× ln(n)) Linear Logarithmic 103 (13.41%)
NP-hard - 114 (14.84%)

B. Workflow

1) Data Collection: We used zero-shot prompting to obtain
the complexity class for the Java code. That is, we type
the comment “// Complexity:” for each sample. This edit
action instructs GitHub Copilot to generate code by using
as context the method already written. It generates up to 10
suggestions, and we collected all of them for analysis.

Listing 1 has an example of a binary search on an array of
integer numbers. We highlight the comment (line 13) used as a
prompt to Copilot to get the code’s complexity. This code is for
illustration purposes and is not present in the dataset.
2) Data Analysis: After obtaining up to ten suggestions for
each sample, we manually went through them to analyze the
predicted complexity. We verified the predicted complexity by
analyzing the first result only (Top-1) and all the suggestions
(Top-all) and compared them to the ground truth.

BinarySearch.java
1 class BinarySearch {
2 public boolean binarySearch(int arr[], int first,
3 int last, int key) {
4 int mid = (first + last) / 2;
5 while (first <= last) {
6 if (arr[mid] < key) { first = mid + 1; }
7 else if (arr[mid] == key) { return true; }
8 else { last = mid - 1; }
9 mid = (first + last) / 2;

10 }
11 if (first > last) { return false; }
12 }
13 // Complexity:
14 }

Listing 1: Using GitHub Copilot to predict the complexity

The suggestions produced by GitHub Copilot could be the best
case, worst case, and the average case of the runtime com-
plexity. In our analysis, we used the worst-case complexity.
As we used zero-shot prompting, there was no mention of the
possible classes. Hence, the GitHub Copilot can predict a class
that is not present in the seven classes we are considering. In
this case, we consider it a negative prediction.

C. Evaluation

We used the following metrics in the evaluation [16]:

• Accuracy (Acc): It is defined as the proportion of correct
predictions made by the model out of all predictions made:
Acc = TP+TN

TP+FP+TN+FN .

• Precision (P): It is calculated by dividing the number of
records with correctly predicted labels by the total number
of predicted observations in that class: P = TP

TP+FP .

• Recall (R): It is computed for each group A by dividing
the number of successfully predicted observations in A by
the total number of observations in the corresponding class:
R = TP

TP+FN .

• F1-Score (F1): It is the harmonic mean of the precision and
recall: F1 = 2×(P×R)

P+R .

True Positives (TP) are the instances where the model correctly
predicted the positive class. True Negatives (TN) are the
number of instances where the model correctly predicted
any negative classes. False Positives (FP) are the number of
instances where the model incorrectly predicted the positive
class. False Negatives (FN) are the number of instances where
the model incorrectly predicted the negative class.

IV. RESULTS

Table II compares the Top-1 accuracy result from GitHub
Copilot with other machine learning-based approaches. The
first three, i.e., Decision Tree, Random Forest, and Support
Vector Machine (SVM) are approached with no involvement
of classic deep learning approach [13]. Decision Tree works
better for quadratic complexity prediction. ASTNN [17] is
a neural network based on Abstract Syntax Tree (AST) and
has a better prediction performance for cubic complexity.
CodeBERT [18] and GraphCodeBERT [19] are BERT-based
encoder pretrained models. PLBART [20] and CodeT5 [21]
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TABLE II
ACCURACY RESULTS FOR TOP-1 SUGGESTION FROM GITHUB COPILOT COMPARED TO OTHER APPROACHES

Method O(1) O(n) O(n2) O(n3) O(ln(n)) O(n × ln(n)) NP-hard
Decision Tree 58.70% 15.10% 71.40% 35.20% 47.90% 67.70% 33.50%
Random Forest 68.10% 18.00% 38.40% 25.00% 48.60% 68.00% 67.90%
SVM 42.60% 17.60% 13.10% 6.00% 27.10% 24.90% 77.00%

ASTNN 71.40% 26.70% 14.20% 49.50% 56.10% 63.00% 82.00%

CodeBERT 78.40% 49.10% 44.80% 32.60% 76.40% 71.70% 81.30%
GraphCodeBERT 83.00% 40.70% 59.30% 11.20% 69.50% 73.40% 66.00%

PLBART 83.40% 56.50% 45.10% 38.20% 75.00% 73.10% 88.40%
CodeT5 77.50% 46.00% 29.90% 17.30% 75.90% 70.20% 83.20%

CodeBERT + HA 79.30% 44.00% 45.10% 32.20% 72.20% 77.90% 89.70%
(+ Pretrain) 70.00% 57.80% 45.60% 39.70% 76.50% 78.80% 88.10%
(+ dead code elimn.) 72.90% 61.00% 42.20% 40.00% 79.60% 80.00% 88.60%

GitHub Copilot(Top-1) 46.23% 69.61% 49.11% 16.67% 23.08% 66.99% 50.00%

use both encoder and decoder for pretraining. Finally, Jeon
et al. [14] used hierarchical architecture, a pre-trained model,
and dead code elimination. These approaches perform better
for constant, logarithmic, linear logarithmic, and NP-hard
complexity prediction than any other models. As we can
observe in Table II, GitHub Copilot performed better for linear
complexity than any other model. It also performed better for
quadratic complexity than encoder-decoder-based pre-trained
models, and Jeon et al. [14].

TABLE III
PRECISION, RECALL, F1-SCORE AND ACCURACY FOR EACH CLASS

Class Precision Recall F1-Score Accuracy
O(1) 0.75 0.46 0.57 46.23%
O(n) 0.29 0.70 0.41 69.61%
O(n2) 0.30 0.49 0.37 49.11%
O(n3) 0.53 0.17 0.25 16.67%
O(ln(n)) 0.77 0.23 0.36 23.08%
O(n× ln(n)) 0.54 0.67 0.60 66.99%
NP-hard 1.00 0.50 0.67 50.00%
Top-1 0.52 0.40 0.40 45.44%
Top-All - - - 56.38%

Table III shows the GitHub Copilot’s precision, recall, F1-
score, accuracy for the Top-1 result, and overall accuracy
for Top-1 and Top-All scenarios. For the Top-1 scenario, we
presented the macro-average result as the dataset was not
balanced. We found that the Top-all performs better than
the Top-1 class based on accuracy. This means that GitHub
Copilot may include the correct answer in one of its ten
suggestions, but it may not always be the first result.

A. Discussion

Figure 1 shows the confusion matrix for the Top-1 sugges-
tion from GitHub Copilot. We can see that GitHub Copilot
confuses constant complexity with linear complexity. For
logarithmic complexity, most of them are predicted as linear
complexity. Most of the cubic complexity was predicted as
quadratic complexity. It also got confused between NP-Hard
and quadratic complexity samples.
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Fig. 1. Confusion Matrix for Complexity Prediction using Top-1 Suggestion

Although OpenAI, the parent company behind the Codex
model [8] that powers GitHub Copilot, has a demo for code
time complexity prediction using prompt engineering [22], we
observed that it falls short in understanding the algorithmic
nature of an implementation to predict its time complexity.
Even though using zero-shot prompting on GitHub Copilot can
be helpful for linear complexity prediction, it falls behind other
deep-learning-based models for other computational complex-
ities. These DL models are specifically trained for code
complexity prediction, so they perform better than GitHub
Copilot (a Codex-based model).

B. Threats to Validity

An internal validity threat to this work is that we manually
collected the top and additional suggestions from the GitHub
Copilot and labeled them in corresponding complexity classes.
To mitigate this threat, the authors cross-checked the analysis
to ensure accuracy. Another threat to this work is that we used
GitHub Copilot as an off-the-shelf, closed-source tool whose
outputs may change over time and differ across different
environments. We use the same environment to extract the
complexity predictions to mitigate this threat.

V. RELATED WORK

Prior works aimed to estimate a code’s complexity through
different code metrics, such as cyclomatic complexity [23],
[24]. Other prior works described ML-based solutions to
computational complexity prediction. For example, Sikka et al.
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[13] created a dataset with over one thousand Java samples and
used multiple features (e.g., the number of loops, breaks, ifs,
etc.) to benchmark different ML methods. Similarly, Prenner
et al. [25] investigated the possibility of using a pre-trained
model like CodeBERT [18] in software engineering tasks,
including code complexity prediction. Recently, Jeon et al.
[14] used hierarchical architecture, pre-training, and dead code
elimination approaches in addition to CodeBERT [18] model.
All these ML-based approaches fine-tuned the model with a
training set and evaluated the performance with a test set. In
this paper, however, we did not do any fine-tuning for GitHub
Copilot. Instead, we used zero-shot prompting to predict code
runtime complexity.

VI. CONCLUSION

We investigated whether GitHub Copilot, an LLM-based code
generation model, can be useful not only for code generation
but also for computational complexity prediction. A cor-
rectly predicted time complexity without fine-tuning the model
would be a cost-efficient solution. We found that GitHub
Copilot can correctly predict a code’s complexity half the
time. We also observed that the correct complexity was often
included in one of the 10 predictions made by Copilot. We
plan to extend this work to other code-generation tools and
complexity classes in future work.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[2] A. Ziegler, E. Kalliamvakou, X. A. Li, A. Rice, D. Rifkin, S. Simister,
G. Sittampalam, and E. Aftandilian, “Productivity assessment of
neural code completion,” in Proceedings of the 6th ACM SIGPLAN
Int’l Symposium on Machine Programming, ser. MAPS 2022. New
York, NY, USA: ACM, 2022, p. 21–29. [Online]. Available:
https://doi.org/10.1145/3520312.3534864

[3] E. Kalliamvakou, “Research: quantifying github copilot’s impact
on developer productivity and happiness,” 2022. [Online].
Available: https://github.blog/2022-09-07-research-quantifying-github-
copilots-impact-on-developer-productivity-and-happiness/

[4] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 1–37, 2018.

[5] F. Sedghi Farooji, “Evaluation of code generation tools,” 2014.

[6] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa,
“Large language models are zero-shot reasoners,” in Advances in
Neural Information Processing Systems, A. H. Oh, A. Agarwal,
D. Belgrave, and K. Cho, Eds., 2022. [Online]. Available: https:
//openreview.net/forum?id=e2TBb5y0yFf

[7] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” Advances in Neural Information Processing
Systems, vol. 33, pp. 1877–1901, 2020.

[8] M. Chen, J. Tworek, H. Jun, Q. Yuan et al., “Evaluating large
language models trained on code,” 2021. [Online]. Available:
https://arxiv.org/abs/2107.03374

[9] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du,
A. M. Dai, and Q. V. Le, “Finetuned language models are zero-shot
learners,” 2021. [Online]. Available: https://arxiv.org/abs/2109.01652

[10] V. Sanh, A. Webson, C. Raffel, S. H. Bach, L. Sutawika, Z. Alyafeai,
A. Chaffin, A. Stiegler, T. L. Scao, A. Raja et al., “Multitask
prompted training enables zero-shot task generalization,” arXiv preprint
arXiv:2110.08207, 2021.

[11] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[12] H. Pham, Z. Dai, G. Ghiasi, H. Liu, A. W. Yu, M.-T. Luong, M. Tan,
and Q. V. Le, “Combined scaling for zero-shot transfer learning,” arXiv
preprint arXiv:2111.10050, 2021.

[13] J. Sikka, K. Satya, Y. Kumar, S. Uppal, R. R. Shah, and R. Zimmermann,
“Learning based methods for code runtime complexity prediction,” in
Advances in Information Retrieval: 42nd European Conference on IR
Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings,
Part I 42. Springer, 2020, pp. 313–325.

[14] M. Jeon, S. yeop Baik, J. Hahn, Y.-S. Han, and S.-K. Ko, “Deep
learning-based source code complexity prediction,” 2023. [Online].
Available: https://openreview.net/forum?id=9irBKvxsw9

[15] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser et al.,
“Competition-level code generation with alphacode,” Science, vol.
378, no. 6624, pp. 1092–1097, 2022. [Online]. Available: https:
//www.science.org/doi/abs/10.1126/science.abq1158

[16] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to informa-
tion retrieval. Cambridge University Press Cambridge, 2008, vol. 39.

[17] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in 2019
IEEE/ACM 41st Int’l Conf. on Software Engineering (ICSE), 2019, pp.
783–794.

[18] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained
model for programming and natural languages,” in Findings of the
Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics, Nov. 2020, pp. 1536–1547.
[Online]. Available: https://aclanthology.org/2020.findings-emnlp.139

[19] D. Guo, S. Ren, S. Lu et al., “Graphcodebert: Pre-training code
representations with data flow,” in 9th Int’l Conf. on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021. [Online]. Available: https://openreview.net/
forum?id=jLoC4ez43PZ

[20] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified
pre-training for program understanding and generation,” in Proceedings
of the 2021 Conf. of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Online:
Association for Computational Linguistics, Jun. 2021, pp. 2655–2668.
[Online]. Available: https://www.aclweb.org/anthology/2021.naacl-main.
211

[21] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” in Proceedings of the 2021 Conf. on Empirical Methods
in Natural Language Processing. Online and Punta Cana, Dominican
Republic: Association for Computational Linguistics, Nov. 2021, pp.
8696–8708. [Online]. Available: https://aclanthology.org/2021.emnlp-
main.685

[22] OpenAI, “Calculate time complexity,” 2023. [Online]. Available:
https://platform.openai.com/examples/default-time-complexity

[23] S. Henry and C. Selig, “Predicting source-code complexity at the design
stage,” IEEE software, vol. 7, no. 2, pp. 36–44, 1990.

[24] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[25] J. A. Prenner and R. Robbes, “Making the most of small software
engineering datasets with modern machine learning,” IEEE Transactions
on Software Engineering, vol. 48, no. 12, pp. 5050–5067, 2021.

4


